Longitudinal brain changes in Parkinson’s disease with severe olfactory deficit
Kazuya Kawabata, Epifanio Bagarinao, Klaus Seppi, Werner Poewe
Abstract
Introduction
Olfactory dysfunction and REM sleep behavior disorder (RBD) are associated with distinct cognitive trajectories in the course of Parkinson’s disease (PD). The underlying neurobiology for this relationship remains unclear but may involve distinct patterns of neurodegeneration. This study aimed to examine longitudinal cortical atrophy and thinning in early-stage PD with severe olfactory deficit (anosmia) without and with concurrent probable RBD.
Methods
Longitudinal MRI data over four years of 134 de novo PD and 49 healthy controls (HC) from the Parkinson Progression Marker Initiative (PPMI) cohort were analyzed using a linear mixed-effects model. Patients were categorized into those with anosmia by the University of Pennsylvania Smell Identification Test (UPSIT) score ≤ 18 (AO+) and those without (UPSIT score > 18, AO-). The AO+ group was further subdivided into AO+ with probable RBD (AO+RBD+) and without (AO+RBD-) for subanalysis.
Results
Compared to subjects without baseline anosmia, the AO+ group exhibited greater longitudinal declines in both volume and thickness in the bilateral parahippocampal gyri and right transverse temporal gyrus. Patients with concurrent anosmia and RBD showed more extensive longitudinal declines in cortical volume and thickness, involving additional brain regions including the bilateral precuneus, left inferior temporal gyrus, right paracentral gyrus, and right precentral gyrus.
Conclusions
The atrophy/thinning patterns in early-stage PD with severe olfactory dysfunction include regions that are critical for cognitive function and could provide a structural basis for previously reported associations between severe olfactory deficit and cognitive decline in PD. Concurrent RBD might enhance the dynamics of cortical changes.